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LINEAR MAGNETIZED PLASMA RESPONSE

TO AN OBLIQUE ELECTROSTATIC WAVE

by

W'dliam S. Lawson

Abstract

The linear response of a spatially periodic magnetized Vlasov plasma distribution function is

computed to second order in the electric field. The results for a specific electric field are then compared

with the results of computer simulation for different amplitudes of the electric field. Both trapping and

resonant heating are observed, and both appear to contribute (for the chosen paranteters) to limiting the

validity of linear theory at larger electric field amplitudes.

'
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LINEAR MAGNETIZED PLASMA RESPONSE

TO AN OBLIQUE ELECTROSTATIC WAVE

Introduction

The second order linear response of an unmagnetized Vlasov plasma has been worked out (1]. It

is the purpose of this report to treat the magnetized case. This extension is not difficult conceptually

(provided that the concepts of [11 are understood), but involves quite a bit more algebra than is

encountered in the unmagnetied cae.

Als presented here is simulation work showing that the limits of linear theory are imposed by

both trapping (as in the unmagnetized case), and by perpendicular heating. Rough estimates are

provided for the wave amplitudes at which each of thes phenomena become important.

Second Order Distribution Function for Oblique Electrostatic Waves

In order to compare the details of linear theory with simulations, the second order perturbed

distribution function f2 (v1 , v) is needed for oblique electrostatic waves. It is computed in essentially

the same way in which f2 was calculated for unmagnetized waves in [1]. An before, the model is

1-d periodic with no collisions, and an imposed electric field. Now, however, there is a magnetic

field at an angle 0 to k, so k must be broken up into a k, parallel to the magnetic field, and a k,

perpendicular to the magnetic field. All three components of the velocity must now be considered.

For the purposes of analysis, the components of velocity will be put in cylindrical coordinates, i. e.,

v1, V,I and 0. f2 contains all the information necessary for the computation of linear kinetic energy

and mean velocity. The second order perturbed distribution function also shows how the kinetic

energy is distributed between parallel and perpendicular components.

For convenience, the coordinates for the derivation will be chosen with k in the i direction with

the magnetic field at angle 0 to the & direction in the z-z plane. The phase angle 4 will be defined

so that when the magnetic field is in the i direction, 0 is the usual angle in the z-y plane with 0 = 0

when the velociti is along the i dirction, and 4 = r/2 when the velocity is in the j direction (0 is

90" out of phase with the phase with respect to position).
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The result ns obtained by the method of ccs, just as in the case of unmagnetised

waves, although now the charactics are helices rather than straight lines The final result is

where the bar denotes averaging over both position and phase. (See Appendix A for the complete

clculation.)

Note that as in the came of the unmagnetid wave, the operator on fo is like a diffusion operator.

In fact, one could make a quasdlinear diffusion equation from the equation for dJ2/dt by substituting

I for 12 and fo. The form of the operator implies that all else being equal, the diffusion in the .

direction is greater for larger n.

Since f2 is now a function of two variables (vi and v), it will not be so useful a diagnostic

in particle simulations due to the noise inherent in trying to fill a two-dimensional space with

only 130,000 particles. Scalar quantities such as the mean parallel velocity, and the parallel and

perpendicular kinetic energies (the mean perpendicular velocity is, of course zero in a magnetized

plasma), are much better suited to be used as diagnostics. Fortunatey, they are easy to compute

fiom the distribution function. Assuming a single-temperature Maxwellian distribution for fo, and

letting p = kvt/w, u = v,/vt, z = w/kvt, w = w./kvt and a = 7 /klvt the results are

2. f(I2)e- (u+n) 1 (2)

nine, k2A2, ( n-Z) 2 + a2 2'e4d 2
(22) 7=' + nw - Z)2 + a2 e/ (3)

=T ( "' + e'du (3)

* and
12 (J 2-a' n(u +nw) 1 -4d()

4 I2 (u - z + nw)2 + C,  /(4

These integrals are well-behaved, and can be evaluated numerically with relative ease.

As with unmagnetized waves, a formula can be derived for 1(t -. oo). The derivation follows
that of 1. The result is

(5V
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where k is the Fonrier transform of the electric field envelope .

This last expression is much better suited to numerical comparison, as the particle distribution

function is difficult to obtain accurately at any given instant. As with the instantaneous formulae for

f,, C,, and -6, the integrals for these quantities as t -. c are relatively easy to evaluate numerically

for the electric field envelope which will be used in the simulatios.

It is again worth noting the resemblance of this result to those of quasi-linear theory (see, for

instance, Kennel and Engelmann (21).

Theory for Trapping and Perpendicular Heating Due to

Oblique Electrostatic Waves

Trapping can occur in waves in a magnetized plasma, such as oblique electrostatic waves, as well

as in unmagnetized waves. Another phenomenon, perpendicular heating, is unique to the magnetized

case, and must also be considered. It is the primary goal of this research to find the field strength at

which trapping and perpendicular heating become important. First trapping will be analyzed, then

perpendiciiiar heating.

The basic concept behind trapping is the same in the magnetized case as in the unmagnetized.

The mechanism for a magnetized plasma is, however, somewhat more complicated. Instead of a

single resonant velocity, there are an infinity of them, one corresponding to each harmonic of the

cyclotron frequency. All these resonant velocities satisfy u; - k, v,, - nw, = 0. In the rest flrames of

particles at each of these resonant velocities the wave has the same apparent . but an apparent

frequency of nwe where n is the harmonic number (in the non-relativistic approximation, a boost

parallel to the magnetic field does not alter the fields). To understand the trapping in the parallel

direction, it is necessary to average the force on a trapped particle over the short time scale (the

gyromotion). From

d(6aV M (9+6 ()6)

the equation in the parallel direction is obtained by dotting with the unit vector in the direction of

the magnetic field, b:

It--q
qE(i, t)cosd (7)

I m
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From this point on, the coordinates will be chosen so that A is in the i direction, and the electric

field is in the z-z plane. Thus, . -= kz(t) + k~z(t). Since we are at the resonant velocity looking

at particles which are at or near resonance, z(t) (the z coordinate of the particle in the resonance

frme) is slowly varying (Le., v, is small) since it is parallel to the magnetic field, and only z(t) and

y(t) will be rapidly varying. Only z(t) is of interest, and setting z(t) = X(t) + Y sin( t + ) where

X(t) is the guiding center position and therefore slowly varying, gives

E(t) -

= Ae(h,,+k, x+4&-Z -,(,, -

= ±e,(hla+hX+.,)e"- ,(.+-(8)

Averaging this over a gyropeiod (and taking the real part) gives

=Ec=z + k.X + n)J. 3  ,, (9)

Thus,

d t con0cos~k, z + k., X + no)j,, (10)

and for the most deeply trapped particles,

d2' Itcos Ok, J_ k? z' (11)

where z' is the z-component relative to the bottom of the trapping well. This is the same formula

as for one dimension, except for the factors of cos and J,. These factors are easy to understand

in physical terms. The cosO factor exists because of the angle between the electric field and the

direction of motion. It is the component of the electric field along the parallel direction instead of

the entire electric field. The second factor results from the averaging of the electric field over the

particle orbit, which may be comparable to a wavelength in radius.

The same quantities Av,, and A4g, (the maximum trapping width and the cumulative trapping

phase shift) can be extended directly from the one dimensional case to this equation for ul. By direct

p. analogy,

&V,. 2 q (oo) (12)

and

A =t 4~ cEcsJ ~~ (13)

;~~z v 'I L f(* ~ * *, **~de
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As in the one dimensional case, if either Avt or Ats, is small enough, the distribution will seem to

follow the linear theory closely, but in the self-consistent case, A/,. should be the only important

parameter-

As mentioned in the beginning of this section, the magnetic field introduces a new effect:

resonant perpendicular heating (or cooling). The derivation is similar to the derivation for the

trapping, beginning with the same equation of motion (6), but dotting it with ir, instead of . The

result is

- q Esinv.e (kua+kA.X+' ) cos(wt + )e-''" ,(w.t+)-n(-.t )I (14)
m

Averaging again over a gyroperiod gives

L)= - + X+n) ( (1)

-'This formula has some interesting ramifications. For particles which are not trapped, z wl

vary fairly rapidly, and the average of the right-haned side will be close to zero. Particles which

are trapped, however, have a limit to the z coordinate, and so the right-hand side may have a

substantial average. This formula is also interesting in the extreme non-linear case because of the J,

factor. Since the argument of the cosine is nearly constant for given particles, it will either gain or

lose energy monotonically until the value of v, approaches a value such that Jn(k v /L e) vanishes

(except, of course, for the case n = 0). Since the trapping in v, also has a factor of J. in it (Equation

(11)), the effect of the resonance in the perpendicular direction is to reduce the effects of trapping

in the parallel direction, except for the important case of n = 0. Since the effect of this equation is

to reduce the effects of trapping, yet it relies on trapping for its effect, it is somewhat self-limiting.

The following derivation of a condition for linearity does not take this into account, and so should

be quite conservative. At first inspection, it might also seem that the perpendicular damping would

not disappear when the angle of propagation is perpendicular to the direction of the magnetic field.

It is assumed, however, in deriving (15) that the particle being followed is in resonance with the

wave, and since k, is zero for perpendicular propagation, resonance requires that a: - nw, = 0. This

is never true for Bernstein modes which are propagating perpendicular to the magnetic field, so the

mode will remain undamped as theory predicts.
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The perpendicular resonance can be said to have become non-linear when the perpendicular

velocity ha. changed by enough to significantly alter the value of J(k.vjw.), or if the particle

picks up perpendicular energy comparable to the thermal ener, i.e. the distribution function is

significantly altered on a scale large enough to affect the bulk plasma, and thereby the dispersion

relation. For a rule of thumb, the factor of cos(kz + kX + n) can be omited, and the factor of

J. can be replaced by 1/2 (since the Jo term does not contribute), leaving

d -. t i I. 'WLc (16)

The solution, plugging in E = E exp(7t) is,

N(t )'. sin I (17)

or

~ ((~va.7J qk, Eo sin (18

For linear theory to hold, this quantity should be much less than 1, but it may hold reasonably well

for larger values since all that is really required is that Av, < w/k, which is a weaker condition

than (18). It should also be noted that the higher values of n are not as important, so for the rule

of thumb, n can be omitted from this formula.

The second condition, that the change in energy be much less than the thermal energy, is derived

trivially from the same formula:

Again, n may be omitted for a rule of thumb. The final result is that if

m Pk

and the trapping condition A~t, - 7r is satisfied, then linear theory will be accurate.

Note that these formulae depend on E-/7 rather than on v/E/7 as with the parallel trapping.

Thus for small damping rates and small field amplitudes, the perpendicular heating will cause non-

linear effects before trapping can set in.
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Numerical Particle Simulations of Oblique Electrostatic Wave

The same sort of simulation as was done for unmagnetized waves in [1] can also be done for

oblique electrostatic waves. As with the unmagnetized waves, a large number of particles is necessary;

but, unlike the unmagnetized simulation, the distribution function is in two variables - vi and vt . .

As before, the field amplitude at which non-linear effects set in is of interest. The situation is not

so simple as for the unmagnetized wave, and so simulation should be a useful adjunct to theory.

Again, the simuilaon model follows the theoretical model (as described in the previous section.

It is 1-d (with all three velocity components, however), collisionless, and periodic, with a neutral-

iang background charge density representing immobile ions. The initial distribution function 10 is

Maxwellian, and the imposed electric field is again E = Eo exp(--ltl) exp(i(k= - wt)).

The distribution function cannot be as easily plotted and interpreted in this case as it was in the

case of unmagnetized waves, because it is a function of both v, and v,. This problem is compounded

by the fact that the number of particles is not enough to smoothly fill the two-dimensional velocity

space. (Two examples of contour plots of f(vl, v) will be shown, but, as will be apparent, they are

not as informative as the distribution function plots were for the unmagnetized wave.) The mean

parallel velocity (which, of course, represents direct current drive), the parallel kinetic energy, and

the perpendicular kinetic energy (which can generate current indirectly when collisions are present)

are, however, easily calculated and just as informative as were the mean velocity and kinetic energy

for the unmagnetized wave. Each of these can be calculated from the theory (through through the

numerical evaluation of some well-behaved integrals) and from the simulation both as the imposed

vi-ve is growing exponentially, and as t - oo.

The parameters chosen for these runs are: kuvt/w, = 1, k, vt 1w, = 2.4 (so kvt/w, = 2.6 and

0 A- 67*), w/w, = 1.5, 7/ywe = .25. Five runs were made at differing values of E0 . These values

were chosen such that qEo/mvtw, would be equal to 0.125, 0.25, 0.5, 1, and 2 (note that this is

a slightly different normalization from that of the unmagnetized wave simulations - but that the

two can be compared through the formula for A4t,). As with the unmagnetized simulations, the

parameters were chosen for ease of simulation rather than for realism, and bear no resemblance to

any self-consistent wave.

A least squares fit to a growing exponential with exponent -y was made on the last e-folding in

E of the growing part of each the three diagnostics. The purpose of these curves was to obtain a

5%*.
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more accurate value for the diagnostics (which they did) and to provide an estimate of the en.r due

to noise which could be used as an estimate of the error of the diagnostics as t - oo (whih they did

not). The standard deviations of the diagnostics about the fit exponential curve should be a fairly

good measure of the error of any given point on the diagnostic curves. The instantaneous value of

the diagnostics is actually plotted in Figure 1, rather than the value obtained from the least squares

fit, for two reasons: first, the assumption under which it was deemed appropriate in the first place

- that a fixed level of noise was superimposed on a basically correct curve - appears to be false,

and second, the correct curve is expected to deviate from a growing exponential, and thus there

would be a systematic error in using the least square value.

Figure 1 shows the values of the diagnostics obtained from simulation (appropriately normalized)

and the theoretical linear values. All the diagnostics converge toward the linear values quite well

*. as the field amplitude decreases, except for the parallel energy, which seems to show either an

oscillation with field amplitude, or fairly strong noise. Since another run with a slightly modified

particle loader (bit-reversed in the z-direction instead of the direction parallel to the magnetic field

- see the technical note at the end of this section) yielded values which deviated with similar

amplitude but without sign of oscillation, it seems likely that the error is due to noise caused by

some small systematic error in the loading scheme. This is initially somewhat surprising, given the

large number of particles in the system, but quite reasonable when it is remembered that only a

small fraction of those particles are resonant with the wave. Note also that the perpendicular kinetic

energy decreases with increasing field amplitude. Since perpendicular heating can drive a current

once the effects of collisions are taken into account, this loss of efficiency is important. More will be

said about the results shown in Figure 1.

Figure 2 shows the parallel kinetic energy as a function of time, along with the exponential curve

which was fit to the parallel kinetic energy using least squares, for the lowest amplitude excitation

over the last e-folding of the electric field before t = 0. The estimated error from this least squares

fit is -3%, which is in fair agreement with the deviation of this diagnostic from theory at t = 0

(-6%), but far smaller than the deviation from theory at t = oo. That some low frequency noise is

present is plainly visible. That it is ony low frequency and that it exists at all in what should be a

uniform system is more evidence for the noise being the result of systematic error.

Figure 3 shows contour plots of f(vn,, v) before the simulation and at t = oc for the highest

excitation amplitude, clearly showing the effects of the wave. Some current drive effect is also clearly
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visible.

When Fiqgue I is compared with the results of the unmagnetized simulation, it is seen that,

as with the unmagnetized simulation, the linear theory holds up to a certain field amplitude, then

the results start diverging. Applying Formula (13) to the simulation, it is found (setting J." - .5)

that a4 1 ,- ranges from 1.67 to 6.67, and that comparable deviation is found at comparable values

of 14t,. This is a strong confirmation of the validity of Formula (13).

The perpendicular heating condition (20) can aslo be evaluated. The values of the left-hand

side range from 0.19 to 3.08, and the values of the right-hand side (which should both be much

larger than the value of the left-hand side for linearity to be guaranteed) are 0.17 and 1.0. The

good agreement of the simulation with linear theory indicates that either an error was made in the

derivation of the condition (20), or that the many approximations made in deriving (20) were very

conservative.

A mildly surprising feature of the simulation is that the parallel energy increases with increasing

non-linearity. This is easily explained when it is realized that the distribution function is actually

made steeper at some resonances according to linear theory. When trapping sets in, these places do

not steepen as inear theory predicts, and may even flatten out instead of steepening. Thus these

resonances contribute more heating than expected. This effect does not contribute to the current

drive, as the resonances which ought to steepen the distribution function are primarily at velocities

opposed to the direction of current drive.

Technical note:

Because of the high noise level associated with random loading in this number of phase space

dimensions, the particles were loaded with some care. The velocities in the parallel direction (rather

than the z direction) were loaded in bit-reversed order, the phase of the perpendicular velocity was

chosen in 3-reversed order, and the magnitude of the perpendicular velocity was chosen in 5-reversed

order. This arrangement should introduce the minimum noise in the parallel direction. (The bit-

reversed loader has fewer problems with recurrence than the 3- and 5- reversed loaders.) See Birdsall

and Langdon [3] for details on bit-reversing.

-a . ... ,....... . . .. ... . . . ./ ... - .. - .. / ..,. - .. % . . ... , ,: ., . . .
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Summary and Conclusions

Linear theory has been used to compute the second order perturbed distribution function for

an oblique electrostatic electron wave both for an exponentially growing wave (Equation (1)) and

for a wave pulse of arbitrary shape (Formula (5)). The results are: for the growing wave

2(V,,v =j "' --2 E k, + 2.- _L

,2 q2  / 0 w 8 \4 k2m 2 "-.'\Ol V.L .

-' k,, + + v. fo(vI, v') (21)(W --W V) .2_
and for the wave pulse

1: 92 Z(k4 + zw4).12 9ul V. 09.L

[j ( )IW - We- kV)1 2 (k_ +2! ) IOuV1.L)] (22)

This linear theory has been tested via particle simulation on its predictions regarding several

second order quantities. The electric field vaied in time, though it was uniform in space. The

results were in agreement with theory, although the tests have not been self-consistent in the sense

that the electric field was imposed rather than solved for using Poisson's equation. The onset of

non-linearity was observed, and the threshold level fit the predictions of a simple trapping model.

This model yields two parameters which predict the behavior of the plasma in the presence of oblique

electrostatic waves: the cumulative trapping phase shift

ab,=:4 1k csO,(kv_ (23)

and the perpendicular energy change

A. q- ~~ (24)

If both of these parameters are small, the behavior should be linear, and indeed the results are

consistent with this prediction.

It is fair to say that the one dimensional effects causing non-linearity are now understood. Un-

fortunately, these conclusions cannot be blithely applied to three dimensions. While the cumulative

trapping phase shift and perpendicular energy change are functions only of the electric field strength

and its temporal envelope in one dimension, in three dimensions, the geometry becomes important,

64 and can considerably alter both parameters.

, 
..
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Appendix A: Second Order Perturbed Distribution Function for Oblique

Electrostatic Wave

For convenience, the coordinate. for the derivation will be chosen with k in the . direction with

the magnetic field at angle 9 to the i direction in the z-z plane. The phase angle - will be defined

so that when the magnetic field is in the i direction, q$ is the usual angle in the z-p plane with

= 0 when the veocity is along the i drction, and 0 = r/2 when the velocity is in the 0 direction

(0 is 90" out of phase with the phase with respect to position). The unperturbed orbit in such a

coordinate system is such that

v.(t') = v, c*w (te- t) + 0(t)) sin + v, co (al)

x(') = z(t) + !- [(sin(w.(' - t) + o(t)) - sin 0t)] sin + v,(t - t)cos (a2)
we

#(t) = o(t) +w (t' - t) (a3)

with , and v,. constants (recall that kcoso and k, a_ ksin0).

The first equation to be solved is

df, __g. o (a4)
dt m N

with

=e (ai5)

In cylindrical velocity coordinates, the differential operator becomes

[. =[ , -L + k coso-L-k.. sn j (a6)

Plugging this operator into the equation for f, and assuming that fo does not depend on O, yields

= ,L8 + coo ,' o .e (ai)
dt M k g &

Plugging in z(t') and (t') and solving by the method of characteristics,

i=: h q e(h'-t){ 8ff"t -1o ffo+'. . [-(i) -J)""+ -q-Q'-i)} dt'

+ k. c° J- os(, + w (t' - t))e( -' " ',dt

. .h •

mlc

.

A~~~~~ E ~ : .
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{ k, a1 + '.~ n-aIoi ) (ugq,vJ

mkn

2Ve01 or e( Uqeh dr

+ kic t -he zerkorde1distriution .1.s(no)

NTe that itofwas necemtyttosabine m pre0ol iple.agownwveItilalbusflhe

L Beforcalcul tring 12t rte eqoi i ett veaeoe , stasata tntreo/ so

Ii =

J4 + (ki±. 'fO LA. o(S

O4I n. WC j

- -= f e e-i!.L - WE#

Note that thist o d espetue i u funcion a i a inctige ot veoc iye hse ae,

whaiic f t o oreWribtio fucto isaot

Nte uati o the second order perturbed distribution tonsa function oftevlctspaeage

dt m u

- 1E~ee'k*wt) - Re (k. 1) A (alO)

The real part of all quantities being previously implied.

I

Before integrating the equation, it is best to average over z, as the spatial structure of 12 is of

no interest. It is also assumed at this point that k is real. Now

d 2  q E- 1 e[i-8h-*
dt m w 7R 6

8) ~~ (~~~) ~(-k-v )e(nm-)#

+~~ -, _L]

[k-L 1 (all)
ov1  V.49V.J

where -f = 1mw. The vlcty pas angle 0 a also b~e integrated over now since the phase

structure of 12 is of no value in computing the quantities of interest. (One must actually be careful
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to denote 0#t) as -O(to) + w(t - to) and average over 0(to), but the end result is the same.) The

differential operator can be rewritten an

Ok sink.8

k, -L+ LL-V.L COS 0- ! -LsinO (al2)

Integrating over 0 will eliminate the 0/&0 term so that only two integrls must be calculated:

- ' '(-m) -= dO (a13)

and

Coo(8~-i+ 6 smi (a14)

Using theme, the sums over m can be evaluated:

SJmb.un =. (a15)

~+ .(6,,.) -41(z) + J,.,,,(z)
2 2

= R,(z) (az6)
z

Plugging these in,

d 2 _ E2  q2 FE ka+ L.0
"T iW2 nVLm2 Vtj. (cm +k& ".

i d.k_ .9_+ n w c a f o X 0 1 ×

Now taking the real part,

d 2 _E
2  (k, a8 nw 0

S= " - + + " 10] X

and so

"" ,-L, + fo(Vn', ) (al9)[w -ZW nw, -\gIF+:3(LV ,&
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The kinetic energy of the wave can now be calculated in order to compare the result with that

of the energy derived from the linear dispernon relation. The kinetic energy can be separated into

parallel and perpendicular components. Starting with the parallel component,

2 = / 2 dv, vdv± (a20)

Breaking up 12 into two terms, the 8/8v term can be integrated immediately, yielding zero since

nJ, (0) = 0 for all n. Integrating the 8/&v, term by parts and substituting

(, -L + -- f o = (k,.% + nw)/o (al)
&U O V , *,?

yields
'=__'.... f (_,__,,_+_-____

6, k2Al J(W -nW. kV.)2 +-t2h (k-± dv. v (a22)

Setting

fo= 7-e (a23)

separates the integrals

2 4 -e Ldv).

2

f k, v (kv,+ nw) I -A-

f w-nw. k, v, ) 2 + -V1--e L dw, (a24)

Setting pA = l~t/w. and y =vj/vt reduces the first integral to

22

= 2 (p2 )e- " (a25)

The algebra for the second integral can be simplified if some new symbols are introduced. Let

u = v,/vt, z = w1/,vg, w = w/k, vt and a = 7y/kjv, then the integral becomes

1 u( e + n) du

1+I f(2z-nw)(u-z+nw).+z(z-nw)-a2e-4 du

'V(ru - z + nw-ia Cr"." ) f e- -
"." =l+(nw -2z) Re- = ~m~ du

+ z(z - du) - a 1 , e-4-a v2-J u - z + nw - da

I n -2)RN'. w a z(z - nw) - a2 lmN(z -nw + ia) (a26)#5 n -2)ReNz-n a

#,5,,'",~,' e , ,,',,, . +' '" ," ; i,.",, " , ;'', .%.';' .';;";..:..;--v;2 -,-.. "



Taking the limit as a -#0 for comparison later with the remits of the calculation usig the linear

dielectric function,

ImnN(z - au, + ia) -~Im [N(z - at,) + sczN'(z - nw)]

-~Im [N(z - nw) - ict(i + (z - vaw)N(z - nw))]

Im JN(z - nw) - a(i + (z - nw) ReN(z - nw)) (an7)

(where N(z) = 1/v12Z(z/v1i) and Z is the standard Plasma Dispersion Fuinction) and

f! __L 1 F .(p2fr..iI21 - z(z - nw) + [2z - nw - z(z - nw)1 N(z - nw)+

27 irz(z -n , (an8)

1Te perpendicular energy is evaluated in muc& the same way:

II -k~i,)2 +awe,>Lf+2aw 2wfo dvu,.

4 k22 (W - ( - I2+,y2? 1 U , V

=E2  1 nw'2- + nw) e- d

= S21 (uA2e-p fnwRe N(z - nw+i)+ !-ImN(z - nw +ia (a29)

- 22

{.I- zau + Inv - znw(z - mu)] Re N(z - mu) + eV12''~ } (a30)

The total energy is thus

64 + 6,

N (kjv, +nw.)4(k*L) (L9 nw,

~zff (w-aw~-k~.)2 + --- 2 ~

k~A~rJJ(W wck~ w*+ 2xfo dv, v, dvh

Z <i
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1+ 2z ReN(z - nw+ia) + Z22ImN(z - nv + io) (a3l)

E22 I

(1 - z2 + [2z - z2(z - ntu)]RieN(z - nw) + 1!2! (a32)

To ensure that the calculation of 12 is correct, the kinetic energy of a electrostatic wave will

now be calculated using the dielectric function:

. [0(R ee -e. (a33)

and
W/ . -el . 2 de (a3)

where W... is the wave kinetic energy density and WL,,i. is the energy which has been absorbed

by the distribution function due to Landau damping. Them expresions am that all dhngse in

the electric field aiplitude are i tmimay slow, and the result is only the tota energy, rather

than 12 itself. The result will be a completely independent check, however, on the enerwy as derived

from the second order perturbed distribution function. The result is (--
W. 4 + -),;2

x W2 exp _ 2(a35)

where

N(z) - (a36)

and Z is the standard Plama, Dispersion Function. The contour of integration goes under the pole

at ( = z as with the Z function. Use has also been made of the identities

N'(z) = -(1 + zN(z)) (a37)

and

_ I.(z)e-' = I (a38)
II
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To impli the notation, let z = w/kv,, w = ,w/kv,, and p -th ,/n, em

° '(.= - (on-. = {I - z2 + [2z - z2(z - uw)]N(z - uw)I.(M2l)e - U} (a39l)

The puey knetic (Landau damnping) part of the ener, for an exponentialiy gowing wave is

S lin a (.40)

4 4

whe y i te wth . For red immi,

Eqaios(39 n 4,-u o qio(3), -V ths erfyngit

go, mUI/% a - %t/Y ,

i,%

WI- I
Eqain a)ad(4)s oEuto a) hsvrbn t

or 0
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